| dim | May 12: Rademacher to forte to forte ters) =0 | |-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | g 1. despectional obstivative (by Fahini) L ^a (Be) =0 | | | 1. differentiability ~ existence of sufficiently many partial deva- | | | (enen) (b) Vf = (df. ~ dmf. | | | 龙台路! pp ve. defin = e· · · · · pfix, 2 = - a.e. xer | | | | | $, \mathbb{R}^n \to \mathbb{R}^m$ | is han-differentially on E: | | <u> </u> | flickently many partial durivatives ~ obifferentiability | | D | finition (forous see) | | | Definition 1.2. A set $E \subset \mathbb{R}^n$ is porous at a point $x \in E$ if there is a $c > 0$ and there is a sequence $y_n \to 0$ such that the balls $B(x + y_n, c y_n)$ are disjoint from E . The set E is porous if it is porous at each of its points, and it is called σ -porous if it is a countable union of porous sets. | | Т. | beoram. | | | Theorem 1.3 ([3]). Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz function. Then the set of those points at which f is not differentiable but it is differentiable in n linearly | | | those points at which f is not differentiable but it is differentiable in n linearly independent directions is σ-porous. Lebesgue design there | | | | | | Q. A SEC E is porous ar x-t (de plise in E) pon-differenciall ar x | | | | | | | | | | | all Leb | sque aull ser for which share is a non-differ Lip funcion. | | → con sié | | | | or functions not having emough Many dispersional derivatives. | | | Alaman (D. Anna) | | | | | | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is | | | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is | | | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . Theorem 1.6. For every Lebesgue null set $E \subset \mathbb{R}^2$ there is a Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ which is not differentiable at any point $x \in E$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . | | teg (u | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . Theorem 1.6. For every Lebesgue null set $E \subset \mathbb{R}^2$ there is a Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}^2$ which is not differentiable at any point $x \in E$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . | | Þef.(u | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. [Addisorber invented] | | Deg.(u | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . Theorem 1.6. For every Lebesgue null set $E \subset \mathbb{R}^2$ there is a Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}^2$ which is not differentiable at any point $x \in E$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . | | • | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . | | • | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. [Radiandor inverse] Alarma 0 from a containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . Alarma 0 from a containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . | | • | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f : \mathbb{R}^2 \to (\mathbb{R})$ is differentiable in at least one point of E . Preiss, 1990] Any G_5 set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. (Radianalise invent) Alanda and the set of points at which a lep powers may be shiftened in a distribution of E and E in the set of points at which a lep powers may be shiftened in a distribution. Alanda and the shiftened in the set of points at which a lep powers may be shiftened in the shiftened in the set of points at which a lep powers may be shiftened in the | | • | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . [Preiss, 1990] Any G_{δ} set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. [And when inverse] All $f: \mathbb{R}^2 \to \mathbb{R}^2$ which is not differentiable at any point $x \in E$. [And when inverse] All $f: \mathbb{R}^n \to \mathbb{R}^n$ if f is not differentiable at the points of $E \subset \mathbb{R}^2$, then at each point $x \in E$ except for a uniformly purely unrectifiable set, there is a unique differentiability direction $f(x)$ of f . Moreover, this direction is determined by the geometry of the set E , it is independent of the function f : for any other Lipschitz function g , the direction | | • | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable in at least one point of E . Theorem 1.6. For every Lebesgue null set $E \subset \mathbb{R}^2$ there is a Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is not differentiable at any point $x \in E$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiability at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiability at set of points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiability at set of points in E . | | | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f \colon \mathbb{R}^2 \to \mathbb{R}^n$ is differentiable in at least one point of E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. [Radianala: inverse] Theorem 1.6. For every Lebesgue null set $E \subset \mathbb{R}^2$ there is a Lipschitz function $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ which is not differentiable at any point $x \in E$. [Radianala: inverse] Interval purely unrestifiable $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable at the points of $E \subset \mathbb{R}^2$, then at each point $f \colon \mathbb{R}^n \to \mathbb{R}$ is not differentiable at the points of $f \colon \mathbb{R}^n \to \mathbb{R}^n$ if $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is independent of the function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is independent of the function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is independent of the function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is independent of the function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is independent of the function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is not differentiable set. Indeed, if $E \colon \mathbb{R}^n \to \mathbb{R}^n$ is not differentiable to $f \colon \mathbb{R}^n \to \mathbb{R}^n$ in and $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is not differentiable of $f \colon \mathbb{R}^n \to \mathbb{R}^n$ in the direction $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is the function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is not differentiable at the points of $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is direction in the non-differentiability direction $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $f \colon \mathbb{R}^n \to \mathbb{R}^n$, then the direction $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $f \colon \mathbb{R}^n \to \mathbb{R}^n$, then the direction $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $f \colon \mathbb{R}^n \to \mathbb{R}^n$, then the direction $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $f \colon \mathbb{R}^n \to \mathbb{R}^n$, then the direction $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $f \colon \mathbb{R}^n \to \mathbb{R}^n$, then the direction $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $f \colon \mathbb{R}^n \to \mathbb{R}^n$. The points $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is $f \colon \mathbb{R}^n \to \mathbb{R}^n$. | | • | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable in at least one point of E . Theorem 1.6. For every Lebesgue null set $E \subset \mathbb{R}^2$ there is a Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is not differentiable at any point $x \in E$. [Preiss, 1990] Any G_5 set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_5 set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_5 set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_5 set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differentiability at a sum of the set E of E is an expectation of E is contained by the geometry of the set E , it is independent of the function f : for any other Lipschitz function g , the direction constructed using f and g agree at each point of E except for a uniformly purely unrectifiable set. Indeed, if E is contained in the non-differentiability set of both | | • | Theorem 1.5 (9). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. Reducedor invace) Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . Results of $F(E)$ precly percly percecularly and $F(E)$ then at each point of $F(E)$ a uniformly purely unrectifiable set, there is a unique differentiability direction $F(E)$ of $F(E)$ Moreover, this direction is determined by the geometry of the set $F(E)$ it is independent of the function $F(E)$ for any other Lipschitz function $F(E)$ the independent of the function $F(E)$ for any other Lipschitz function $F(E)$ the independent of the function $F(E)$ contained in the non-differentiability set of both $F(E)$ $F(E)$ and $F(E)$ set $F(E)$ then the direction $F(E)$ defined by the function $F(E)$ of $F(E)$ and $F(E)$ then the direction $F(E)$ defined by the function $F(E)$ of $F(E)$ and $F(E)$ then the direction defined by $F(E)$ the function $F(E)$ and $F(E)$ then the direction defined by $F(E)$ the function $F(E)$ then the directions defined by $F(E)$ the function $F(E)$ then the directions defined by $F(E)$ then the direction $F(E)$ then the directions defined by $F(E)$ then the direction $F(E)$ then the directions defined by $F(E)$ then the direction the | | y | Theorem 1.5 [9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable in at least one point of E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable at any point $x \in E$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiabile at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiable at some points in E . [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}$ is differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is differentiability at $f \in \mathbb{R}^n$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is differentiability set, i.e. any Lipschitz $f \colon \mathbb{R}^n \to \mathbb{R}^n$ is differentiability at $f \in \mathbb{R}^n$ and | | | Theorem 1.5 ([9]). There is a Lebesgue null set $E \subset \mathbb{R}^2$ such that every Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable in at least one point of E . Theorem 1.6. For every Lebesgue null set $E \subset \mathbb{R}^2$ there is a Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is not differentiable at any point $x \in E$. [Preiss, 1990] Any G_δ set E containing dense set of lines in \mathbb{R}^n universal differentiability set, i.e. any Lipschitz $f : \mathbb{R}^n \to \mathbb{R}$ is differently purely unrestripate. Leads to G for a uniformly purely unrectifiable at the points of $E \subset \mathbb{R}^2$, then at each point $x \in E$ except for a uniformly purely unrectifiable set, there is a unique differentiability direction $f(x)$ of f . Moreover, this direction is determined by the geometry of the set E , it is independent of the function f ; for any other Lipschitz function g , the direction constructed using f and g agree at each point of E except for a uniformly purely unrectifiable set. Indeed, if E is containing dense set of lines in \mathbb{R}^n universal differentiability direction constructed using f and g agree at each point of E except for a uniformly purely unrectifiable set. Indeed, if E is containing dense set of lines in \mathbb{R}^n is differentiability direction f defined by the function f is f in | | Kemur | 4. THEOREM 1. Given any measurable plane set E , $ E < \infty$, we can construct a set E i of lines such that (i) through each point of E passes at least one line of E , (ii) $ E = E $. | | | |--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | | (ii) $ L = E $. | | | | f. R" → R" | | | | | • | | | | | Notation: | Notation. We denote by $\mathcal{N}_{n,k}$ the σ -ideal of subsets of \mathbb{R}^n generated by sets for which there is a Lipschitz function $f \colon \mathbb{R}^n \to \mathbb{R}$ differentiable in at most k linearly | | | | | independent directions. No.p. sets are A-purely unrectifiable | | | | | | | | | Def. tangene field. | | | | | $x \in E \in \mathbb{R}$ | ion 1.8. $\tau: E \to G(n, k)$ is called a k -dimensional tangent field of a set E Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable in the direction $\tau(x)$ at all xcept those belonging to an $\mathcal{N}_{n,k-1}$ set. | | | | Theore the tan | em 1.9. Every set $E \in \mathcal{N}_{n,k}$ has a k -dimensional tangent field. Moreover, ent field is unique up to an $\mathcal{N}_{n,k-1}$ set. — \mathcal{C}_{r} 1.7 plus | | | | — tangene fie | d equil def. | | | | 一装/店。 | Proposition 1.10. The set of (directional) non-differentiability of a Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}$ can be written as a countable union of sets E , for each of which we may find a direction u and numbers $a < b$ such that $\lim_{t \to 0} \frac{f(x+tu) - f(x)}{t} < a < b < \limsup_{t \to 0} \frac{f(x+tu) - f(x)}{t}.$ | | | | | the ara. ues stak | | | | | Pè±x. X u375253. ⇒ fixetu) - Ltiuni ≤ f(x+tiu+un) < f(x+tiu) + Ltiun | | | | | | | | | | liming frequency for a factor of the things from the first the first than fir | | | | | liming f(x+z(m+m))-f(m) = lines f(x+z(m)-f(m)) - Lines | | | | | L' <u>åx</u> }- | | | | | \$ / dip. > Ep. c.s. null on every line in direction u. | | | | | | | | | | R. Every curve Y. R. P. 17'-41 could enough | | | | | $L_{10a_1} \rightarrow a \leftarrow b - L_{10a_1}$ $10a_1 \leftarrow \frac{b - a}{b \cdot a}$ | | | | | | | | | | , | | | | | Do bottor, if 800 annil enough, for every 800 there is an open see QOE | | | | | | | | | | ex. the length of Gar is less than c for every curve r:R-R' with 11'-u1es | | | | | | | | | 2.16 | | | | | Def (C-widtel |): Given a convex cone C, the C-width of an open set G = sup lIrAh) | | | | | Ly carve , r' EC as. + | | | | | general, inf C-widel(a) | | | | | 457 open | | | | Def. Defi | | | | | dimen | ition 1.11. If $E \subset \mathbb{R}^n$, we say that the mapping $\tau \colon E \to G(n,k)$ is a k - sional tangent field of E if for every cone C , the set of those points $x \in E$ $\operatorname{nich} \tau(x) \cap C = \{0\}$ has C -width zero. | | | | equal | not it | | | | | | | | | | | | | | | | | | | ⇒ the see whom | f is not differentiable can be covered by countally many sees. Shall description? | | | | | S THE MALE ALL S | | | | (i) There is a Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}^n$ that is non-differentiable at any | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | point of E . | | (ii) There is a sequence (possibly infinite) of Lipschitz functions $f_i : \mathbb{R}^n \to \mathbb{R}$ | | such that at every point of E at least one of the f_j is non-differentiable. | | (iii) The set E is in $\mathcal{N}_{n,n-1}$. | | (iv) The set E has an $(n-1)$ -tangent field.
(v) If $n \le 2$: E has Lebesque measure zero. | | (v) If $n \leq 2$. It has bevergue measure zero. | | | | every Lebesgue multisee is in Name for a >2? | | man tobera is a null port ECR" sec. espay lip is differentiable on some points of it.? | | · · · · · · · · · · · · · · · · · · · | | yes i jemen
2 men | | | | | | | | tow we can construct a non-differentially function for a given (small) sex E | | | | Latin . | | Theorem 1.13 (Taharshi) For any C., set F. C. D. of Laborage measure years there | | Theorem 1.13 (Zahorski). For any G_{δ} set $E \subset \mathbb{R}$ of Lebesgue measure zero there is a Lipschitz function $f \colon \mathbb{R} \to \mathbb{R}$ with $\text{Lip}(f) \leq 1$ which is differentiable at every | | $point \ x \notin E \ and$ | | f(x+t) - f(x) | | $\liminf_{t \to 0} \frac{f(x+t) - f(x)}{t} = -1 < 1 = \limsup_{t \to 0} \frac{f(x+t) - f(x)}{t}$ | | for every $x \in E$. | | | | | | EVZORI. ECR is the set of points of non-differentiality of some light function f. R. R | | | | (\$) m(E)=0 BEAS6 (a union of countally many as sex, | | > mc() = 1 Octalle (N minim e) warransiy many of sest | | | | | | | | Construction. (4 open sex is countable halom of disjoint open intervals.) Given E: Null. | | | | G. PG. 2 DE so small thee lik is small in every component of law. | | | | (The Township . () () () () () () () () () (| | if E compare. (6.). (6.) . (10.) < 2" (12) b2. connected component of lan (finit may) | | Art (16,71) < 2* (11) | | Not \(\(\lambda_1/\lambda\right) \in 2"\(\lambda_1\right)\) | | | | $f_{k}(\alpha) = m \left((-\alpha, \chi) \cap \widehat{a}_{k} \right)$ $f^{(\alpha)} : \stackrel{\sim}{\mathbb{Z}}_{q} (\dashv)^{k} f_{k}(n)$ is $(-C_{Q}) \Rightarrow f_{k}(p) + \stackrel{\sim}{\mathbb{Z}}_{q}$. | | | | $f^{(m)}$, $\sum_{k,k}^{\infty} (-1)^k f_k(x)$, $\forall x \in \mathbb{R}$, and m : $\forall y \in \mathbb{I}_m$ (closure of the connected component of Am contains x) | | | | $\left \frac{f(y) - f(x)}{y - x} \right \ge \left \sum_{k = 1}^{\infty} \frac{(-1)^k \left f_k(y) - f_k(x) \right }{y + x} \right , \left \frac{f_k(y) - f_k(x)}{y - x} \right - \sum_{k = 1}^{\infty} \left \frac{f_k(y) - f_k(x)}{y - x} \right $ | | 1 | | $= \int_{-\infty}^{\infty} \frac{l(A_s \operatorname{alxy})}{1+x_1}$ | | · Fun 17-X | | | | 7 1 | | (1) | | $\frac{21}{3} \frac{3}{4} \frac{3}{4} \frac{(j_{*} - \chi)}{2} \Rightarrow \frac{f(j_{*}) \cdot f_{*}}{3 - \chi} = j_{*} - 2^{2 - \chi}$ | | $ f(y)-f^{(n)} $ $ f(y)-f_{n} $ | | even n, $\left \frac{f(y)-f(x)}{y-x}\right = \int_{m_{min}} \frac{f_{m_{min}}}{f(y-x)} = 2^{3m}$ | | | | | | | | | | 7f € € Gs. At points of R/E; upper And lower das; of f differ by No here than 22. Not f is differentially | | | | | | | | higher dim. fk: for an open sex G.C.R." of (small) C-width w and unit vector e from invector of C | | | | Construct a function to R - R s.s. Liptury bounded (depending on C and e) | | , | | اع × و الله عند الله الله الله الله الله الله الله الل | **Theorem 1.12.** For every set $E \subset \mathbb{R}^n$, the following are equivalent: | The state of s | onal plati 1 in the phiresism e as each xth | | | | | |--|--|--|--|--|--| | ې په همد هارورنو | anal PATI I ja Took päifoolise e At MANA X EG. | | | | | | from global point of view, w books tike hove duri zero. | | | | | | | (Bh 赴 n in ix) | | | | | | | Theorem 1.15. For every $\tilde{e} > 0$ and for every set E which is G_{δ} and uniformly purely unrectifiable there is a function $f : \mathbb{R}^n \to \mathbb{R}$ such that $(1) \operatorname{Lip}(f) = 1;$ $(ii) \ f \ is \ \dot{e} \text{-differentiable on } \mathbb{R}^n \setminus E \text{ that is, for every } x \in \mathbb{R}^n \setminus E \text{ there is } r > 0$ and a vector u such that $ f(x) - f(y) - (u, y - x) \le \tilde{e} y - x \text{ for all } y \in B(x, r),$ $(iii) \ f \text{or every } x \in E, \eta \in B(0, 1) \subset \mathbb{R}^n \text{ and } \varepsilon > 0 \text{ there is an } r < \varepsilon \text{ such that } f(y) - f(x) - (y, y - x) \le r \text{ for all } y \in B(x, r).$ In particular, f is not differentiable at the points of E , it is not even ε -differentiable for any $\varepsilon < 1$. | | | | | | | | | | | | | | conjecture. Nn.o = Uso? | | | | | | | | | | | | | | the sex of points of k-dim differ can be characterised as. | | | | | | | 111 | | | | | | | Theorem 1.16. (i) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a Lipschitz function, and for each $x \in \mathbb{R}^n$ choose $\tau(x)$ to be a maximal dimensional subspace such that the restriction of f to $x+\tau(x)$ is differentiable at x . For each $0 \le k \le n-1$, let E_k denote the set of those points at which $\dim \tau(x) = k$. Then $E_k \in \mathcal{N}_{n,k}$. (ii) Let $E_k \subset \mathbb{R}^n$ be an $\mathcal{N}_{n,k}$ set for some $0 \le k \le n-1$. Then there is a Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}^{k+1}$ and a k -tangent field τ of E_k such that f is not differentiable at any $x \in E_k$ in any direction e that is orthogonal to $\tau(x)$. | | | | | | | analogy of The 1.1) | | | | | | | Theorem 1.17. For each $0 \le k < n$ there is a constant $c_{n,k} > 0$ such that, whenever $l > k$, $\varepsilon > 0$ and E is a G_{δ} , $\mathcal{N}_{n,k}$ subset of \mathbb{R}^n , then there is a function $f : \mathbb{R}^n \to \mathbb{R}^l$ with $\mathrm{Lip}(f) \le 1$ which is ε -directionally differentiable at every point of $\mathbb{R}^n \setminus \mathbb{E}$ and has the property that for every $x \in E$ there are k -dimensional linear subspaces V, W of $\mathbb{R}^n, \mathbb{R}^l$, respectively, so that for any unit vectors $v \in V^{\perp}$ and $w \in W^{\perp}$, $\lim_{t \to 0} \frac{\langle f(x+tv) - f(x), w \rangle}{t} - \lim_{t \to 0} \frac{\langle f(x+tv) - f(x), w \rangle}{t} \ge c_{n,k}.$ |